
IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 3, March 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.53207 883

Using HDFS Approach for Practical

Performance Analysis

R.Vasavi
1
, MD. Moona Tasleem

2
, L. Bharath Reddy

3
, B. Ramya

4
, P. Rojashalini

5

Assistant Professor, Department of Computer, VNR VJIET, Hyderabad, India
1

Student, Department of Computer, VNR VJIET, Hyderabad, India
2, 3, 4, 5

Abstract: Distributed file systems are the key component of any cloud-scale data processing middleware. Evaluating

the performance of DFSs is accordingly very important. In this paper, we propose a systematic and practical

performance analysis framework, driven by architecture and design models for defining the structure and behaviour of

typical master/slave DFSs. Our approach is different from others because 1) most of existing works rely on

performance measurements under a variety of workloads/strategies, comparing with other DFSs or running application

programs, but our approach is based on architecture and design level models and systematically derived performance

models; 2) our approach is able to both qualitatively and quantitatively evaluate the performance of DFSs; and 3) our

approach not only can evaluate the overall performance of a DFS but also its components and individual steps. We

demonstrate the effectiveness of our approach by evaluating Hadoop distributed file system (HDFS).

Keywords: DFS, HDFS, performance, Map reduce, PVFS.

1. INTRODUCTION

Data Intensive DFSs are any file system that allows

multiple users to access to files distributed on multiple

machines via a computer network, for the purpose of

sharing files and storage resources. DFSs are emerging as

a key component of large-scale cloud computing

platforms. Applications on such computing paradigms

come with increasing challenges on how to transfer and

where to store and compute data reliably and efficiently.

Specifically, these challenges include data transfer bottle-

necks, performance unpredictability, scalable storage and

so on. To deal with these challenges, various DFSs such as

Hadoop distributed file system (HDFS), the Google file

system (GFS), MooseFS, and ZFS, have been developed

for large-scale distributed systems such as Facebook and

Google. Performance analysis is an important concern in

the distributed system research area. Researchers have

made a lot effort to evaluate, model, and analyse

distributed systems for computing intensive or data

intensive applications. There exist well-known evaluation

benchmarks (e.g., LINPACK, MPIBLAST) for computing

paradigms. However, similar kinds of widely accepted

benchmarks are rarely seen in DFSs. For example, there is

no specific benchmark proposed for evaluating DFSs (e.g.,

HDFS, GFS) for web services. Some other related works

evaluate performance of DFSs by comparing them with

similar kinds of DFSs (e.g., NFS) via running in-house

benchmarks or application programs. Some researchers

measured the performance of DFSs under a variety of

workloads and strategies. In the field of evaluating the

performance of DFSs, a typical approach taken is through

experiments by running DFSs; therefore, it is mainly based

on the analysis of the experiment results, or draw

conclusion by comparing with existing DFSs. Therefore,

there rarely exist approaches that are capable of

qualitatively and quantitatively analysing the overall

performance of a DFS or its individual step or component,

prior to the deployment of the DFS, without running

benchmarks or particularly designed or selected

applications. In this paper, we propose such an approach

that is driven by architecture and design models of DFSs.

System architects can use design-time performance to

evaluate the resource utilization, throughput, and timing

behaviour of a system prior to the deployment due to the

following reasons: 1) analysing performance of the system

is much files expensive than testing the performance of the

system by running it, 2) it is simply infeasible to test all

kinds of different configurations of the system by running

it, and 3) performance analysis on models helps architects

make configuration and deployment decisions to avoid

costly redesign, reconfiguration or redeployment. Some

model-driven performance analysis and prediction

(MDPAP) approaches have been proposed in the literature

and especially Balsamo et al. conducted a survey on

MDPAP.

The survey results reveal that 1) most approaches make

use of unified modelling language (UML) or UML-like

formalisms to describe behavioural models, 2) few

approaches provide direct correspondence between the

software specification abstraction and the performance

model evaluation results, and 3) the performance model

should be easy to apply in practice. The key challenge of

MDPAP approaches is finding the right architecture and

performance abstraction of the system under study. Based

on the above study, in this paper, we propose a practical

performance analysis methodology particularly for DFSs.

The approach is based on the UML specification of the

DFS architecture and their key behaviours. Some elements

of the architecture model are also characterized by some

stereotypes from the MARTE profile, which is a UML

profile for modelling and analysis of real-time and

embedded systems.[6] We define the following

characteristics of our methodology: 1.

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 3, March 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.53207 884

Fig. 1 Process Flow Diagram or Architecture Diagram

DFS architecture and design models provide a common

understanding of DFS, which is considered crucial as DFS

practices lack of such a common knowledge base. 2.

Based on the models, one can systematically and

automatically derive configurable parameters. Without

them, this activity will heavily rely on expert implicit

knowledge, inevitably file reading to the low-quality

management of the process. 3. Configuring DFS systems

is typically the first and most important step to set up

experiments. Therefore, our methodology provides a way

to design experiments whose results directly contribute to

performance analysis. 4. Qualitative and quantitative

performance analysis can be conducted, based on the

models, system configurations and experiment results.

Analysis results can be also interpreted based on the

architecture and design models, therefore making the

architecture and design refinement much easier. 5. Based

on the models, both the overall system performance and

individual component or execution step performance can

be analysed.

This is because the message interactions and relationships

between components are clearly specified in the

architecture and design models. As one popular

master/slave structured DFS, HDFS is selected as the

representative for evaluation. Three sets of real-world

experiments were conducted to qualitatively assess the

effectiveness of our performance analysis approach. We

also conducted a set of experiments of HDFS on EC2 to

quantitatively analyse the memory and CPU bottlenecks of

the metadata server of HDFS and formulate the response

time of the Read operation of the metadata server to client

requests.

2. LITERATURE REVIEW

Data-intensive distributed file systems are emerging as a

key component of large scale Internet services and cloud

computing platforms. They are designed from the ground

up and are tuned for specific application workloads.

Google File System, Hadoop distributed file system

(HDFS) [2] and Amazon S3 [1], are defining this new

Cloud Server

Racks

Generated

Data nodes

generated for

each rack

Client Node

 File Write

File Read

Add Block

Location

Get Block

Location

Name Node

Get Block

Location

Give Block

Location

Upload Blocks

in each Data

Nodes

Performance

Analysis

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 3, March 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.53207 885

purpose-built paradigm. In this paper we compare and

contrast parallel file systems, developed for high

performance computing, and data-intensive distributed file

systems, developed for Internet services.

The goal of this paper is to compare Internet services file

systems and parallel file systems, specifically can we use

modern parallel file systems in the place of custom

Internet services file systems. In this paper, we compare

and contrast the Parallel Virtual File System (PVFS), a

representative for parallel file systems, and the Hadoop

Distributed File System (HDFS), a representative for

Internet services file systems.[5]

We built a non-intrusive shim layer to plug PVFS in to the

open-source Hadoop Internet services stack. This enables

Hadoop applications to use PVFS for persistent storage

without any changes to the PVFS source shim layer

enables PVFS to over the same benefits that HDFS over to

the Hadoop data-processing framework through three key

features: Exposing data layout for function shipping HDFS

is optimized for applications that process massive amount

of data using the Hadoop / Mapreduce abstraction, A goal

of this abstraction is to minimize the transfer of large

amounts of input data by shipping computation to nodes

that store the input data. The Hadoop framework achieves

this collocation using file data layout exposed by HDFS.

PVFS also maintains file layout information. Our shim

layer extracts layout maps from PVFS to the Hadoop

framework. Read a head buffering to avoid the overhead

of synchronous small reads, HDFS clients pre-fetch large

amount of data and pipeline the data transfer in smaller

units. Because clients in PVFS are stateless and do not

cache data, all requests for data are synchronously sent to

the server, irrespective of the amount requested. Our shim

layer implements a read a head buffer that enables PVFS

to match the transfer efficiency of HDFS. Replication for

fault tolerance HDFS provides high availability by storing

three copies (by default) of a file. It uses a rack-aware

replication policy to ensure data availability in face of

machine and rack failures. PVFS relies on storage

hardware to provide fault tolerance. Our shim layer

emulates HDFS-like replication by writing all data, on

behalf of the PVFS clients, to three different servers. We

evaluate the performance of PVFS and HDFS by running

micro benchmarks and macro benchmarks, comprised of a

suite of four data-intensive applications, on the 4,000 core

Yahoo! M45 cluster. Our experiments demonstrate that

PVFS performs at file as good as HDFS for most

workloads including data-intensive Hadoop applications

that benefit from the data layout. The major exception to

this is sort, which is a write-intensive workload. In such

workloads, HDFS writes one copy un striped locally and

two striped widely while our un modified PVFS writes all

three remotely. With limited network bandwidth this can

cause a 2:3 ratio in completion time. Moreover, PVFS

outperforms HDFS for workloads doing concurrent writes

to the same file because HDFS does not support

concurrent writes. For instance, a “parallel" file copy

operation using PVFS is more than four times faster than

HDFS on 16 nodes.[5]

3. PRESENTATION OF THE MAIN

CONTRIBUTION OF THIS PAPER

Model-driven performance analysis has been recognized

as an important tool to analyze system performance. In the

paper, we presented such an approach, particularly tailored

for distributed file systems (DFSs). Our approach mainly

has several components: the architecture and design

models and explicitly captured performance-relevant,

configurable parameters, and the systematically derived

performance model. The related work in the field mainly

evaluates the performance of DFSs and computing

paradigms by for example, relying on running benchmarks

or application programs, performance measurements under

a variety of workloads/strategies, and comparing with

other DFSs. Our approach, however, qualitatively and

quantitatively analyses the DFS performance based on the

models we constructed, such that early feedback on

architectural design, configuration, and deployment of

DFSs can be provided. Thereby one can avoid cost for

architectural redesign and redeployment. We conducted a

series of real-world experiments deployed on EC2,

Tansuo, and Inspur to demonstrate how our approach

should be applied and to evaluate how effective it is.

Results show that our approach is practical and can

achieve sufficient performance analysis.

4. METHODOLOGY

In this we use the approach of HDFS, the Hadoop

Distributed File System, is a distributed file system

designed to hold very large amounts of data (terabytes or

even petabytes), and provide high throughput access to

this information. Files are stored in a redundant fashion

across multiple machines to ensure their durability to

failure and high availability to very parallel applications.

HDFS has a master /slave architecture. An HDFS cluster

consists of a single Name Node, a master server that

manages the file system namespace and regulates access to

files by clients. In addition, there are a number of Data

Nodes, usually one per node in the cluster, which manages

storage attached to the nodes that they run on. Internally, a

file is split into one or more blocks and these blocks are

stored in a set of Data Nodes. The Name Node executes

file system namespace operations like opening, closing,

and renaming files and directories. It also determines the

mapping of blocks to Data Nodes. The Data Nodes are

responsible for serving read and write requests from the

file system’s clients. The Data Nodes also perform block

creation, deletion, and replication upon instruction from

the Name Node.[11]

Map Reduce is also a data processing model. Its greatest

advantage is the easy scaling of data processing over

multiple computing nodes. Under the Map Reduce model,

the data processing primitives are called mappers and

reducers. In the mapping phase, Map Reduce takes the

input data and feeds each data element to the mapper. In

the reducing phase, the reducer processes all the outputs

from the mapper and arrives at a final result. In simple

terms, the mapper is meant to filter and transform the input

into something that the reducer can aggregate over.[12]

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 3, March 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.53207 886

Fig. 2 Map Reduce

5. FINDINGS

In this paper, an approach is proposed which increases the

performance of reading and writing the file. The file is

divided into racks and each rack consists of one or more

data nodes. Data node is used for file storage. Name node

consists of the location of file. Depending on the read time

and the write time performance is determined as shown in

the table below.

6. CONCLUSION

The performance of DFSs and computing paradigms by,

for example, relying on running benchmarks or application

programs, performance measurements under a variety of

workloads/strategies, and comparing with other DFSs. Our

approach, however, qualitatively and quantitatively

analyzes the DFS performance based on the models we

constructed, such that early feedback on architectural

design, configuration, and deployment of DFSs can be

provided.

ACKNOWLEDGEMENT

Every work requires support from many people and areas.

We would like to thank our guide Prof. R. Vasavi and

H.O.D (Computer Dept.) for giving us the valuable

guidance and encouragement and for providing all

facilities for smooth progress of our project. We would

also like to thank all the staff members of Computer

Engineering Department for timely help and inspiration

for completion of the project.

REFERENCES

[1] Amazon Simple Storage Service (Amazon S3),

http://aws.amazon.com/S3/, 2013.
[2] Hadoop Distributed File System (HDFS),

http://hadoop.apache.org/hdfs/, 2013.

[3] Moose FS, http://www.moosefs.org/, 2013
[4] OpenStack SWIFT, http://openstack.org/software/openstack

storage/, 2013.
[5] Parallel Virtual File System, http://www.pvfs.org/, 2013.

[6] The UML MARTE Profile, http://www.omgmatre.org/, 2013.

[7] The Windows Azure, http://www.windowsazure.com/, 2013.
[8] M.G.Baker, J.H.Hartmen, M.D.Kupfer, K.W.Shirriff, and

J.K.Ousterhout, “Measurements of a Distributed File System”,

Proc.ACM SIGOPS Operating Systems Rev., vol. 25, pp. 198-212,
1991.

[9] S.Gheamawat, H. Gobioff and S. T. LEUNG, “The Google File

System”, vol. 37pp. 29-43, 2003.
[10] OMG, “UML 2.2 Superstructure Specification (formal/2009-02-

04)”.

[11] HDFS Architecture Guide
[12] Hadoop in Action – Chuck Lam

0 50000 100000

23

965

5200

6140

Time in milliseconds

S
iz

e
in

 b
y
te

s

readtime

writetime

